Tuesday, September 24, 2013

Constant Velocity vs. Constant Acceleration -- Lab

The purpose of the Constant Velocity vs. Constant Acceleration Lab was to understand and see the physics concepts in real-life and to experience what we're learning first-hand. I have done this lab many times before, but it was still really fun again this time!

Constant velocity is the same distance covered in a certain amount of time. The speed is unchanging. Constant acceleration is the same change in a distance covered over a certain amount of time. The two terms are not interchangeable.

My partner and I set up the lab with a long table, a piece of chalk, and a metal ball. We set a metronome  for 0.5 second intervals. Next, while my partner rolled the ball, I quickly drew chalk lines every 0.5 of a second wherever the ball was on the table. Once we measured the distances, we filled in a data table to record our findings. The second task was to do the same experiment with the table on an incline. Using two books, two table legs were supported and raised. The data was recorded.

*Constant velocity is when an object remains at an unchanging speed. In the lab, the chalk marks were equally spaced apart, meaning that the ball was rolling at a constant velocity.
*Constant acceleration is when an object speeds up or slows down at the same rate for each time interval. In the lab, the chalk marks were spaced further from the mark before it, meaning that the ball was rolling at a constant acceleration.

Constant velocity is the same distance covered per amount of time. (V = d/t)
Constant acceleration is the same change in velocity per amount of time. (A = Δv/t)

The graphs of constant velocity looks like a straight line with each point equal in distance from the rest, whereas the graph of constant acceleration looks like an upwards curve with each point further from the previous one.

The graph's equation was given on Word when adding a trendline. Y=mx+b is the equation of a line. "Y" is the meters, "X" is the seconds. "M" is the slope. The how far equation, d=1/2a(t*t), parallels this concept. 1/2a is equal to the slope. To find "a" one must multiply "M" by 2 or divide it by 1/2. 


I LEARNED:
1.) What units to put in each axis and how to plot a scatter graph.
2.) How 1/2a is the same as the slope "M."
3.) How to think about mathematical physics in real life, mainly how it changed my perspective.

CHEERS.


1 comment:

  1. I like how you were really thourough in your process of what you did during the lab. I said pretty much the same thing with the chalk marking where it was every .5seconds, but I didnt add that we set a metronome to tick every .5 seconds, or that to raise the table you used two books underneath two of the legs. What I saw that was similar to mine was how you explained how the y=mx+b corrolates into the d=1/2a(t*t). What was different from mine, was your definitions for velocity and acceleration and how you distinguish them.

    ReplyDelete